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BC climate forcing: Large, complex, uncertain

[Bond et al., 2013]



Focus on direct radiative effect
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IPCC, Fifth Assessment Report, 2013.



(1) Global models underestimate absorption AOD

AeroCom models underestimate AAOD, often by a lot
[Bond et al., 2013]



(2) Global models overestimate BC loading

AeroCom models overestimate BC over Americas by factor of ~8,
overestimate remote BC by factor of ~5.

[Koch et al., 2009] [Schwarz et al., 2010]

AeroCom means in black, observations in colorObs in black, AeroCom models in color



Our project

Black carbon aerosol is a chemically dynamic system, subject to atmospheric aging 
reactions; these can lead to dramatic changes in physicochemical properties, and 
therefore climate forcing effects.

An incomplete understanding of this aging, and/or representation of this aging 
within models, may explain some fraction of the model‐measurement discrepancies.



Key BC aging reactions
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Effects of aging on BC properties

1) Enhancement of light absorption by coatings (“lensing effect”)
[e.g., Schnaitner 2005, Bond et al. 2006, Schwarz et al. 2008, Lack et al. 2009, Cappa et al. 2012] 
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2) Increased water‐uptake ability by coated or oxidized BC

+  H2O

Higher hygroscopicity can lead to …  
‐more efficient light scattering (due to larger particles from water uptake)
‐ shorter atmospheric lifetimes due to increased wet deposition
(‐more facile activation to form cloud droplets)



Generic BC aging in global models*
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Park et al. [2005]: ~1 day conversion 
gave best agreement with measured 

BC export efficiency

*including GEOS‐Chem mass‐based scheme



Aging in global models

Koch et al. 2009

N = no aging

A = aging at a 
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coagulation and
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# = aging affects
optical properties



Our project

Major questions:
‐ what are the most important atmospheric aging transformations of BC? 
‐ what sort of effects does aging have on climate‐relevant properties of BC?
‐ how do these aging reactions impact BC direct radiative forcing?

Black carbon aerosol is a chemically dynamic system, subject to atmospheric aging 
reactions; these can lead to dramatic changes in physicochemical properties, and 
therefore climate forcing effects.

An incomplete understanding of this aging, and/or representation of this aging 
within models, may explain some fraction of the model‐measurement discrepancies.



Approach: Laboratory + Modeling

Laboratory studies of
BC aging reactions:

Chemical, optical properties

Development of 
global modeling framework 
for representation of aging, 

climate effects

Global modeling using
aging parameters from laboratory 

studies for improved 
calculation of DRF



Next steps
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Experimental matrix

Based upon “BC2” intercomparison study, 318 runs in 1 month [Cross et al. 2010]

BC source
‐ fractal soot from McKenna burner (denuded at 300oC)
‐ also atomized black carbon spheres

Particle size
‐monodisperse, 30‐300 nm

Relative humidity
‐ controlled after reactor, but before instruments (multiplex of 0%, 30%, 60%, 90%)

Aging type
‐ heterogeneous oxidation (OH, O3)
‐ coated with sulfuric acid (SO2)
‐ coated with SOA (fresh, aged)
‐ ammonium sulfate/nitrate
‐mixed coatings

‐pinene
SOA

toluene
SOA



Parameterization

‐ Calculation of radiative forcing in models requires knowledge of key optical 
parameters as a function of particle properties

‐ This will be done by construction of a “lookup table” (or interpolated function) 
based on experimental results

particle size

relative humidity

wavelength

mixing state (BC:org:SO4)

mass extinction efficiency

single scattering albedo

asymmetry parameter



Summary/conclusions

‐ Modeling vs measurements of BC: models overestimate loadings, 
underestimate aerosol absorption

‐ Aging processes can affect both concentrations (via changes to 
deposition) and optical properties (via changes to coatings); need for an 
improved understanding, description of such processes  

‐ Laboratory results: Heterogeneous oxidation an efficient way to change 
organic components of soot; oxidation can dramatically change “brown”‐
ness of brown carbon

‐ Global modeling results: Improved agreement between predicted, 
measured BC loadings and properties (but AAOD still underestimated!)

‐ Next steps: Laboratory results      implementation in models
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